已知抛物线y^2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,O为坐标原点,求证:
向量OA*向量OB为定值
人气:113 ℃ 时间:2019-08-21 11:37:02
解答
设A(x1,y1) B(x2,y2)直线AB的方程为x=my+p/2,
与y²=2px联立得y²-2pmy-p²=0,所以y1y2=-p²
x1x2=y1²/2p×y2²/2p=(y1y2)²/4p²=p²/4,
∴向量OA*向量OB=x1x2+y1y2=-3/4 p²
怎么样
推荐
猜你喜欢
- 车胤盛萤是什么成语意思?
- 谈迁面对厄运的态度能想到什么名言?
- 硫酸`硫酸钠`硝酸`硝酸钠`石墨`金刚石的元素符号是什么
- 永远活在我们心中,英语怎么说?
- 甲乙仓库有化肥48吨,甲仓运出百分之二十,乙仓运进2.4吨,两仓库量相等,问甲乙仓各有多少吨?
- 一个力是8N,一个力是12N,它们的合力最大是多少,最小是多少?
- 已知A(3,0),点P在圆x+y=1上,Q为AP的中点,求点Q的轨迹方程
- 已知函数f〔x〕=1+根号2cos〔2x-4分之拍〕求函数的最小正周期和单调增区间