> 数学 >
求a的n次方±b的n次方的因式分解过程
人气:151 ℃ 时间:2019-08-18 06:28:49
解答
n为奇数:
a^n+b^n=a^n-a^(n-1)b+a^(n-2)b^2-...-a^2b^(n-2)+ab^(n-1)
+a^(n-1)b-a^(n-2)b^2+...-ab^(n-1)+b^n
=a(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
+b(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
=(a+b)(a^(n-1)-a^(n-2)b+...-ab^(n-2)+b^(n-1))
n为正整数:
a^n-b^n=a^n+a^(n-1)b+a^(n-2)b^2+...+a^2b(n-2)+ab^(n-1)
-a^(n-1)b-a^(n-2)b-...-ab^(n-1)-b^n
=a(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))
-b(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))
=(a-b)(a^(n-1)+a^(n-2)b+...ab^(n-2)+b^(n-1))

用个简单的实例来看下吧。主要是中间增项和减项。

你只要记住因式分解的结果,再乘进去就可以看到过程了。

推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版