已知F
1、F
2是两个定点,点P是以F
1和F
2为公共焦点的椭圆和双曲线的一个交点,并且PF
1⊥PF
2,e
1和e
2分别是上述椭圆和双曲线的离心率,则有( )
A. e
12+e
22=2
B. e
12+e
22=4
C.
+=2D.
+=4
人气:204 ℃ 时间:2019-08-21 02:36:20
解答
由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,不妨令P在双曲线的右支上由双曲线的定义|PF1|-|PF2|=2m ①由椭圆的定义|PF1|+|PF2|=2a ②又∠F1PF2=900,故|PF1|2+|PF2|2=4c2 ③①...
推荐
- 已知F1 F2是两个定点,点P是以F1 F2为公共焦点的椭圆和双曲线的一个交点,并且PF1垂直PF2,e1和e2分别是
- 已知F1,F2是两个定点,点P是以F1,F2为公共焦点的椭圆与双曲线的一个交点,并且PF1垂直于PF2,e1和e2分别是椭圆与双曲线的离心率,求1/(e1)^2+1/(e2)^2的值
- 若椭圆=1(a>b>0)和双曲线 =1(m>0,n>0)有相同焦点f1、f2,p为两曲线的一个交点,则
- 双曲线与椭圆有共同的焦点F1(0,=5),F2(0,5)点P(3,4)是双曲线的渐近线与椭圆的一个交点,
- 已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是上述椭圆和双曲线的离心率,则有( ) A.e12+e22=2 B.e12+e22=4 C.1e21+1e22=2 D.1e
- 在△ABC中,角A,B,C所对的边长分别为a,b,c,且COS(A+B)/2=1/2
- 在等差数列中,a1+a3=8,且a4为a2,a9的等比中项,求此数列的首项,公差,前n项和
- when waiting for the message from the one you love .10086 is the biggest en
猜你喜欢