在△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,则△ABC的形状( )
A. 等腰直角三角形
B. 等腰三角形
C. 直角三角形
D. 等边三角形
人气:438 ℃ 时间:2020-04-05 11:52:57
解答
利用正弦定理化简sin2A=sin2B+sin2C得:a2=b2+c2,∴△ABC为直角三角形,∵sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,∴sinCcosB-cosCsinB=sin(C-B)=0,∵C-B=0,即B=C,则△ABC的形状为等腰直角三角形.故选...
推荐
猜你喜欢
- jan has lunch at twelve 对 at twelve 提问
- 一瓶2升的果汁喝了10分之3,还剩多少毫升
- 把长8cm,宽3cm,高3cm的长方体锯成一个最大的正方体,锯掉部分的体积是多少?
- 象公路 水路 铁路还有什么路?
- 温室效应,臭氧空洞,酸雨分别是什么引起的?
- 一个最简分数,它的分子分母的积是100,这个最简分数是( )
- 求曲线y=1/2x^2,x^2+y^2=8所围成的图形面积
- 已知向量a,b满足| a |=1 b=(2,1)且λ a+b=0 则 |λ |=