>
数学
>
如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(1)求证:PB∥平面AEC;
(2)求直线BP与平面PAC所成的角.
人气:488 ℃ 时间:2019-09-22 09:10:47
解答
(1)证明:连接BD交AC于O,连接EO.
在△DPB中,E是PD的中点,
又O是BD的中点,∴EO∥PB.…
又EO⊂平面AEC,PB⊄平面AEC,
∴PB∥平面AEC …(6分)
(2)由PA⊥平面ABCD,BA⊂平面ABCD,
∴PA⊥BA,
又BA⊥AC,AC∩PA=A,AC,PA⊂平面PAC,
∴BA⊥平面PAC…(9分)
∴直线BP与平面PAC所成的角为∠BPA…(11分)
在Rt△ABP中,由PA=AB,可知∠BPA=45°
故直线BP与平面PAC所成的角为45°…(12分)
推荐
PD垂直于平行四边形ABCD所在平面,PB⊥AC,且PA⊥AB,求证ABCD是正方形
四棱锥P-ABCD的地面为平行四边形,E是PD中点,PA⊥平面ABCD,且PA=AB=AC,AB⊥AC
如图,在底面为平行四边形的四棱锥P-ABCD中,AB垂直AC PA垂直平面ABCD.且PA=AB=2,BC=2根号2,E是PD的...
在底面为平行四边形的四棱柱P-ABCD中,AB┻AC,PA┻平面ABCD,且PA=AB,点E 是PD的中
如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点. (1)求证:PB∥平面AEC; (2)求直线BP与平面PAC所成的角.
想着暑假预习高一的新课,请问高一有哪些课本,分别是什么版本的?顺便补充一问:选修和必修是肿么一回事?=
they do homework at seven o'clock every day怎么变一般疑问句?
歧化反应原理,从得失电子方面解释一下,
猜你喜欢
在2-【2(x+y)-()】=x+2,括号内应填
在暗室里用红光照射一幅绚丽多彩的油画作品,将会看到什么现象?为什么?
墨守成规象征哪个人物
将一个末尾数字不小于零的正整数的末尾数字去掉后,所得的新数是原数的约数,则这种性质的正整数当中,
1,2,3,4,5这5个数字可以组成许多个没有重复的四位数,将他们从小到大排列起来,4123是第几个数?
chuck wall
如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复
替凡卡的爷爷写一封信给凡卡
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版