证明,若f在(0,+∞)上为连续函数,且对任何a〉0有g(x)=∫【ax,x】f(t)dt≡常数,x∈(0,+∞),则
则f(x)=c/x,x∈(0,+∞),c为常数.
人气:103 ℃ 时间:2020-04-09 15:52:12
解答
因为g(x)=∫【ax,x】f(t)dt≡常数,因为f连续,所以g可导,g'=af(ax)-f(x)=0.再根据导数的定义对f求导,f'=f(x+Δx)-f(x)/Δx(Δx->0),又因为af(ax)-f(x)=0,所以f(x+Δx)=f(x)/(1+Δx/x),代入再取极限f'(x)=-f(x)/x,积分...
推荐
- 设a>0,函数f(x)=ax+b/x2+1,b为常数. (1)证明:函数f(x)的极大值点和极小值点各有一个; (2)若函数f(x)的极大值为1,极小值为-1,试求a的值.
- 设a>0,函数f(x)=ax+b/x2+1,b为常数. (1)证明:函数f(x)的极大值点和极小值点各有一个; (2)若函数f(x)的极大值为1,极小值为-1,试求a的值.
- 函数f(x)=ax+1/x+2(a为常数) (1)若a=1,证明f(x)在(-2,+∞)上为单调递增函数
- 设函数f(x)连续,g(x)=∫¹.f(xt)dt,且当x趋向于0时f(x)/x的极限为A,A为常数,求g'(x)并讨论g'(x
- 用定义证明:(1)函数f(x)=ax+b(a<0,a,b为常数)在R上是减函数
- 形容骄傲自以为了不起,看不起别人的句子
- 27.如图,求三角形ABC的面积.关于坐标系A(-2,3),B(-4.-1),C(2,0),答得好的追加.
- 在“测不规则形状石块的密度”的实验中:
猜你喜欢