若n阶矩阵A满足A的三次方等于3A(A-I),证明I-A可逆,并求(I-A)的逆矩阵
人气:471 ℃ 时间:2019-08-20 10:34:54
解答
A^3=3A^2-3A
-A^3+3A^2-3A=0
-A^3+3A^2-3A+I=I
(I-A)^3=I
所以,(I-A)[(I-A)^2]=I,即(I-A)(A^2-2A+I)=I,所以I-A可逆,且逆矩阵是A^2-2A+I
推荐
- 设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…+
- 设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆
- 设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆
- 设n阶矩阵A满足A的m次方等于0,m是正整数,证明E-A可逆,且E-A的逆矩阵等于E+A+A^2+A^3+.+A^m-1
- 证明a分之b的n次方等于a的n次方分之b的n次方
- 一辆汽车5分之3小时行45千米照这样的速度,从甲地到乙地共行50分钟,甲乙两地相距多少千米
- 启动他励直流电动机时,为什么一定要先加励磁?电枢直接接通电源会有什么后果?
- 两个连续自然数的倒数之和是72分之17,这两个连续自然数分别是多少
猜你喜欢