设A是实数集,且满足条件:若a∈A,a≠1,则1/1-a∈A,证明:
1)若2∈A,则A中比还有另外两个元素;(2)集合A不可能是单元素集;(3)集合A中至少有三个不同的元素.
人气:325 ℃ 时间:2019-08-21 23:13:34
解答
1、因为2属于A,则1/(1-a)=2,得a=1/2,又因为a属于A,得1/(1-a)=1/2,得a=-1,再次代入1/(1-a)=-1,得a=2.所以A中有3个元素,分别为2、1/2、-12、若A为单元素集合,则1/(1-a)=a,该解得a=1/2正负根号3i/2,不为实数,所以假设不...
推荐
猜你喜欢
- 工程队修一条长300米的路,第一天修的米数如果再加上9米,正好是全长的7/20,工程队第一天修了这条路的百分之几?
- ——,——,——,——,——,——等分类单位进行分类?
- 已知3的A次方=4,9的B次方=8,27的C次方=10,求27的A+3C-2B次方的值
- this flower is very beautiful改为感叹句
- never的短语
- 三角形的三个顶点分别在曲线xy=a(0
- 1/2x+1>-3 -2x-4<4x+4 2x+1>3 2-x<1 2(x+1)<3x 3(2x+2)≥4(x-1)+7 x/2+1>x 2/3x≤1/3(x-2)
- 用记忆犹新造句