设f(x)为连续函数,证明:∫下0上x f(t)(x-t)dt=∫下0上x(∫下0上t f(u)du)dt
人气:454 ℃ 时间:2019-08-20 15:29:50
解答
解答见图片:

推荐
- 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)dt 证明:在内有
- 证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
- 『紧急』 设函数f(x)在[a,b]上连续,且f(x)>0,证明:()(x)=§(a,x)f(t)dt+2§(x,b)f(t)dt在[a,b]上单...
- ∫(0,x)f(t)dt-∫(-x,0)f(t)dt是周期函数的证明
- 已知关于x,y的多项式ax的平方+2bxy+x的平方-x-2xy+不含二次项,求5a-8b?
- 一根绳子,围成一个周长是15.7的半圆,这个半圆的面积是多少?最后答案是14.65,
- pep小学英语六年级下Recycle2课件第三题和第四题!快
猜你喜欢