令F(x)=ln(1+x)-(x-
| 1 |
| 2 |
| 1 |
| 3 |
因为F′(x)=
| 1 |
| 1+x |
| 1−(1+x3) |
| 1+x |
| x3 |
| 1+x |
所以F(x)在(0,+∞)上严格单调递减,
从而当x>0时,F(x)<F(0),即:
ln(1+x)<x-
| 1 |
| 2 |
| 1 |
| 3 |
【解法2】利用泰勒公式进行证明.
对于任意x>0,利用泰勒公式可得,∃ξ∈(0,x),使得
ln(1+x)=x-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
从而,ln(1+x)<x-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 1+x |
| 1−(1+x3) |
| 1+x |
| x3 |
| 1+x |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |