大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
我是这样证明的
因为AAT=E,所以A为正交矩阵,且|A|
人气:281 ℃ 时间:2019-09-10 18:12:30
解答
因为AAT=E,所以A为正交矩阵,且|A|
推荐
- 设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
- 矩阵 A 满足:AAT = E 且 |A| = -1,则矩阵 A 必有一特征值为-1.为什么等于证明|A+E|的行列式为0就可以
- 求解线性代数 关于特征值的一道题 设三阶矩阵A的特征值为2,4,4,则行列式|E-A^-1|=?
- 【线性代数】设n阶矩阵A的行列式|A|=d≠0,求|A*
- 线性代数:有道题——设a=(1,0,-1)T,矩阵A=aaT,n为正整数,求aE-A^n的行列式?
- 我是一个四年级的学生用英语怎么说
- 一种原子能变成另外一种原子吗?
- 给句子换个说法,是意思不变:
猜你喜欢