已知椭圆x^2/25+y^2/16=1,F1,F2为焦点,M为椭圆上的点,若△MF1F2的内切圆的面积为9π/4,
则这样的点M的个数
人气:499 ℃ 时间:2019-08-21 12:44:07
解答
若△MF1F2的内切圆的面积为9π/4,则内切圆半径为3/2.
三角形的面积等于半周长*内切圆半径,本三角形的半周长为(2a+2c)/2=a+c=8,所以面积为12.
三角形的面积也等于半焦距*高,得高为4,因此M点只能是短轴端点,有两个.
推荐
- 椭圆x225+y216=1的左右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|值为( ) A.53 B.103 C.203 D.53
- F1,F2为椭圆 x^2/(25)+y^2/(16)=1的左右焦点M为椭圆上一点且三角形MF1F2的内切圆的周长为3π则满足条件的M
- 已知F1、F2为椭圆x225+y216=1的左、右焦点,若M为椭圆上一点,且△MF1F2的内切圆的周长等于3π,则满足条件的点M有 ( )个. A.0 B.1 C.2 D.4
- 已知M为椭圆x^2/5+y^2/4=1上一点,F1,F2为椭圆的两焦点,若角F1MF2=30°,试求三角形MF1F2的面积
- 设m点是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,F1,F2为焦点,如果∠mF1F2=75 °,∠mF2F1=15°则椭圆的离心率为_______________
- 已知Y=y1+y2与X成正比例,Y2于X成反比例.并且X=1时,Y=1,当X=3时,Y= -5.求X=3/2时Y的值
- 小人一词怎么解释?
- 用一元一次方程
猜你喜欢