设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.
设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}.
若A={1,2}且f(0)=2,求M和m的值
若A={2},且a≥1,记g(a)=M+m,求g(a)的最小值
第一题我算出来8和1
然后是第二题
人气:348 ℃ 时间:2019-08-18 07:33:50
解答
1.由A={1,2}得:a+b+c=1,4a+2b+c=2
由f(0)=2得:0+0+c=2
综上,得a=1,b=-2,c=2
f(x)=x2-2x+2
易得,M=f(-2)=4+4+2=10,m=f(1)=1-2+2=1
2.
推荐
- 设二次函数f(x)=ax+bx+c在区间【-2,2】上的最大值,最小值分别是M,m.集合A={x|f(x)=x},若A={1,2},且f(0)=2,求M和m的值
- 设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别为M、m,集合A={x|f(x)=x}. (1)若A={1,2},且f(0)=2,求M和m的值; (2)若A={2},且a≥1,记g(a)=M+m,求g(a)的最小
- 设二次函数fx=ax^2+bx+c在区间[-2,2]上的最大值,最小值分别为M,m,集合A={fx=x}
- 设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值,最小值分别为M,m,集合A={x|f(x)=x}.若A={2},且a≥1,记g(
- 设二次函数f(x)=ax²+bx+c在区间[-2,2]上的最大值,最小值分别是M,m,集合A={x|f(x)=x}
- 氧气与二氧化碳在血液中的运输与特点
- 1928年奥运会结束后,国际足联召开代表会议,一致通过决议,举办四年一次的世界足球锦标赛.至今,总共举办过( )届的世界足球锦标赛.
- 直角坐标系中,以P(2,1)为圆心,r为半径的圆与坐标轴恰好有三个公共点,则r的值为_.
猜你喜欢
- 王奶奶用篱笆靠墙围了一个半圆形的鸡场.篱笆的全长为28.26米,鸡场的面积是多少平方米?
- 有一堆钢管共18层,上面第一层有5根,下面第一层都比上一层多一根,这堆钢管共有多少根?
- “澳大利亚是世界上唯一覆盖整个大陆的国家,从北到南距离为3220公里,从东到西3860公里,面积大体相当于
- 铁丝在氧气中燃烧的化学方程式可以读作
- 在100克盐水中,盐与水的比是1:9,那么盐水中水的质量是?甲乙两数的比是5比4,如果甲数是40,则乙数是?
- 巧连数中的破麦剖梨是什么意思?
- 习题19.2 1——3题答案
- 在一条长2500米的公路两侧架设电线杆,每隔50米架一根(两端都架设).