已知函数f(x)=|x|/(x+2),如果关于x的方程f(x)=Kx²有四个不同的实数解,求实数k的取值范围
就这样
人气:275 ℃ 时间:2019-08-17 21:35:21
解答
x=0明显是符合题意的一个解,
Kx²=|x|/(x+2),
K|x|=1/(x+2),
当x>0时,kx²+2kx-1=0,
当x<0时,kx²+2kx+1=0,
由于方程f(x)=Kx²有四个不同的实数解,
由△1=4k²+4k=4k(k+1)>0得k<-1或k>0,
由△2=4k²-4k=4k(k-1)>0得k<0或k>1,
综上有k<-1或k>1.
推荐
猜你喜欢
- 小麦联合收割机价格
- 写出修辞手法:兔死狐悲,军令如山,对答如流,鬼使神差,固若金汤
- 所以的细菌都有 ( ) ( ) ( ),这三种结构.
- 开门看见老王直僵僵地镶嵌在门框里一句用了什么修辞手法,强调了什么
- 求满足条件{x|x^2+1=o}为M的真子集,M为{x|x^2-1=0}的子集,求集合M的个数
- He didn't serve as the CEO of that company until this August.他任那家公司的CEO直至今年八月.
- 连词成句:1.an,old,to,the,street,usually,cross,man,takes,Sally
- x的平方+2x=15(这方程咱解)