在平面几何里有勾股定理:设△ABC的两边AC,BC互相垂直,则AC2+BC2=AB2.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面与底面面积的关系,可以得出的正确结论是:设三棱锥A-BCD三个侧面ABC,ACD,ADB两两相互垂直,则___
人气:193 ℃ 时间:2019-10-26 12:02:12
解答
SABC^2+SACD^2+SADB^2=SBCD^2
作AH垂直平面BCD于H 连接BH交CD于M
因为AB垂直AD AB垂直AC 所以AB垂直平面ACD
所以AB垂直CD 又AH垂直CD 所以CD垂直平面ABH 所以BH垂直CD AM垂直CD
若要证SABC^2+SACD^2+SADB^2=SBCD^2
需证1/4(AB^2*AC^2+AB^2*AD^2+AC^2*AD^2)=1/4BM^2*CD^2
AC^2(AB^2+AD^2)+AB^2*AD^2=(AC^2+AD^2)*BM^2
AC^2*BD^2+AB^2*AD^2=(AC^2+AD^2)*BM^2
AC^2(BD^2-BM^2)=AD^2(BM^2-AB^2)
AC^2*DM^2=AD^2*AM^2
AC^2(AD^2-AM^2)=AD^2*AM^2
AC^2*AD^2=CD^2*AM^2
SACD=1/2AC*AD=1/2AM*CD
AC*AD=CD*AM
得证
推荐
- 在平面几何里,有勾股定理“设三角形ABC的两边AB、AC互相垂直,则AB的平方加上AC的平方等于BC的平方”,拓
- 在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是
- 在三角形ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC平方的长?(勾股定理试题)
- 类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC互相垂直,则三角形三边长满足关系:AB2+AC2=BC2.若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积
- 三角形ABC中,BC=a,AC=b,AB=c,若角C=90°,根据勾股定理……
- 我要通过电视多看体育节目!I 空 空 空 watch more sports 空 Tv
- the skirt is very good.i will ( )it.A.made B.take C.have
- (多选题)一带电粒子从电场中的A点运动到B点,轨迹如图中虚线所示.不计粒子所受重力,则( ) A.粒子带正电 B.粒子加速度逐渐减小 C.A点的速度大于B点的速度 D.粒子的初速度不为零
猜你喜欢