设A,P均为3阶矩阵,且PTAP=diag(1,1,2),若P=[a1 a2 a3],Q=[a1+a2 a2 a3],其中aj(j=1,2,3)均为3维列向量,则QTAQ=
人气:404 ℃ 时间:2020-03-31 10:02:16
解答
推荐
- 设3阶矩阵A=(a1,a2,a3),其中a1,a2,a3均为3维列向量,且|B|=2,矩阵B=(a1+a2+a3,a1+2a2,a1+3a2+a3).则|A|=?
- 设a1,a2,a3均为3维列向量,矩阵A=(a1,a2,a3)并且|A|=1,B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)行列式=?
- 设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3)B=(a1+a2+a3,a1+2a2+2a3,a1+3a2+4a3),如果|A|=1,那么|B|=
- 设a1,a2,a3,a4是4维列向量,矩阵A=(a1,a2,a3,a4),如果|A|=2,则|-2A|=()
- 已知a1,a2为2维列向量,矩阵A=(2a1+a2,a1-a2),B=(a1,a2),若|A|=6,则B=?,
- 请问这几个判定方法有什么不同呢?全等三角形这章的
- 北极点上的太阳高度全天不变,且数值等于当天太阳直射点的北纬的纬度数.
- 燃烧的“利”与“弊”火就是化学上所说的燃烧.根据你对燃烧反应的理解,若以“燃烧的利与弊”做为论题,你的观点是_,请你列举有力的证据论证你的观点. 要求:①论据简洁、论证
猜你喜欢