若a,b,c是不全相等的正数,用综合法证明lga+b/2+lgb+c/2+lga+c/2>lga+lgb+lgc
人气:217 ℃ 时间:2020-01-30 05:30:17
解答
lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc?
应该是lg(a+b)/2 +lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc吧
lg(a+b)/2 +lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
lg(a+b)(b+c)(a+c)/8>lgabc
因为lg单调增加,所以
(a+b)(b+c)(a+c)/8>abc
(a+b)(b+c)(a+c)>8abc
证明上面这个结论,即可证到本题结论
因为a+b>2√ab(a,b为不相等的正数)
b+c>2√bc(b,c为不相等的正数)
a+c>2√ac(a,c为不相等的正数)
三个式子相乘(a+b)(b+c)(a+c)>2√ab*2√bc*2√ac=8abc
(a+b)(b+c)(a+c)>8abc
所以本题得证
至少比楼上要全吧.
推荐
- 若a,b,c,是不全相等的正数,求证:lg(a+b)/2+lg(b+c)/2+lg(c+a)/2>lga+lgb+lgc
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
- 数列极限limn→+∞(nn2+12+nn2+22+…+nn2+n2)=( ) A.π2 B.π6 C.π3 D.π4
- 张明投了4次,3次投中.王方投了3次,2次投中.李宏投了6次,5次投中.他们一共投进135个球.王方投进了几
- shirley temple是什么意思
猜你喜欢