已知抛物线y^2=2px,直线l斜率为k经过焦点f与抛物线交于A,B求1\AF+1\BF的值.
人气:452 ℃ 时间:2019-10-14 00:37:01
解答
设抛物线y²=2px(p>0),焦点坐标为F(p/2,0),A(x1,y1),B(x2,y2),
过点F的直线方程为x=my+(p/2),
代入y²=2px,得y²=2pmy-p²=0,∴y1y2= -p²,
x1x2=(y1²/2p) (y2²/2p)=p²/4.
由抛物线的定义可知,AF=x1+(p/2),BF=x2+(p/2),
∴1/AF+1/BF
=1/[ x1+(p/2)]+1/[ x2+(p/2)]
=(x1+x2+p)/[x1x2+p(x1+x2)/2+(p²/4)] (通分化简)
将x1x2= p²/4,x1+x2=AB-p,代入上式,得
1/AF+1/BF=AB/[(p²/4)+p(AB-p)/2+(p²/4)]=2/p,
即1/AF+1/BF=2/p.
推荐
- 抛物线Y^2=2PX中过焦点F的直线与抛物线交于A,B两点,求AF分之一加BF分之一的值
- 抛物线y^2=2px的焦点为F,一倾斜角为π/4直线过焦点F交抛物线于A,B两点,且|AF|>|BF|,求|AF|/|BF|的值
- 已知抛物线C:y^2=2px(p>0)过焦点F且斜率为k(k>0)的直线与C相交于A,B两点,若向量AF=3向量FB,则k=
- 已知抛物线y^2=2px(p>0),焦点为F,一直线l与抛物线交于A、B两点,且AF+BF=8,且AB的垂直平分线恒过定点S(6,0)
- 已知抛物线Y=aX^2(a
- 为什么用if而不用because
- 水泥厂三月份上半月完成月计划产量的62%,下半月生产150吨,结果超额完成全月计划12%,三月份原计划生产
- 几何 (12 19:44:37)
猜你喜欢