求证:(n+2002)(n+2003)(n+2004)(n+2005)+1是一个完全平方数(n为正整数)
人气:227 ℃ 时间:2019-10-04 11:13:07
解答
求证:(n+2002)(n+2003)(n+2004)(n+2005)+1是一个完全平方数
(n+2002)(n+2003)(n+2004)(n+2005)+1
=(n+2002)(n+2005)*[(n+2003)(n+2005-1)]+1
=(n+2002)(n+2005)[(n+2002)(n+2005)+(n+2005)-n-2002-1]+1
=(n+2002)(n+2005)[(n+2002)(n+2005)+2]+1
=(n+2002)(n+2005)^2+2(n+2002)(n+2005)+1
=[(n+2002)(n+2005)+1]^2
所以(n+2002)(n+2003)(n+2004)(n+2005)+1是一个完全平方数
推荐
猜你喜欢
- [已知方程组2x+5y=-6,3x-5y=16,与方程组ax-by=-4,bx+ay=-8的解相同,求a,b的值,快,今天就要!
- 在1……9中任取3个数,要求这3个数不相邻,它的取法有
- She is my brother , Nancy
- 某种细菌培养过程中,每30分钟分裂一次,一分为二,经过()小时,这个细菌可繁殖256个.
- I don't have tomatoes for lunch 变肯定句
- (9又1/2+7又1/6+5又1/12+3又1/20+1又1/30)*12=
- I asked him( )
- a success may learn to foresee more challenges,a failure the hope and opportunities