>
数学
>
若方阵A满足方程A平方-2A+3I=0,则A,A-3I都可逆,并求它们的逆矩阵,如何证明?
人气:494 ℃ 时间:2020-05-04 02:26:54
解答
证明:因为 A^2-2A+3I=0
所以 A(A-2I)=-3I
所以 A 可逆,且 A^-1 = (-1/3)(A-2I).
又由 A^2-2A+3I=0
得 A(A-3I)+A-3I+6I=0
所以 (A-3I)(A+I)=-6I
所以 A-3I 可逆,且 (A-3I)^-1 = (-1/6)(A+I).
推荐
设方阵A满足方程A^2-2A+4I=0,证明A+I和A-3I都可逆,并求他们的逆矩阵.
设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.
设n阶方阵A满足A^2-A+E=0,证明A为可逆矩阵,并求A^-1的表达式?
设方阵A满足A2-A-2E=0,证明:A和A+2E均可逆,并求A和A+2E的逆矩阵.
假设方阵A,B满足方程A^2+AB+B^2=0,且B可逆,试证明A和A+B都可逆
用温州话写一段话怎么写 不用写拼音 只要字写出来
斜面坡度越大越省力吗?
C在什么情况下生成CO和CO2
猜你喜欢
《道私者乱、道法者治》什么意思.
某药品连续两次降价后,零售价为原来的百分之49,则此药平均每次降价的百分率为
f(x)=x²-2x-1 求单调区间 并说明在各个单调区间上的是增函数还是减函数
平行四边形的两邻边所在直线的方程为x+y+1=0及3x-4=0,其对角线的交点是D(3,3),求另两边所在的直线的方程.
所有的有理数都可以用数轴上的点来表示,数轴上的每个点也都表示一个有理数.理由!
5倍21/125-11的立方根-0.1的负二次方的平方根+4
如图,AC=DF,AD=BE,BC=EF.求证: (1)△ABC≌△DEF; (2)AC∥DF.
英语翻译
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版