已知复数z=a+bi(a,b∈R),存在实数t,使z的共轭=(2+4i)/t-3ati成立 求|z-i|+|z+i| 的最小值
已知复数z=a+bi(a,b∈R),存在实数t,使z的共轭=(2+4i)/t-3ati成立 求|z-i|+|z+i| 的最小值
人气:185 ℃ 时间:2019-08-20 15:03:54
解答
不知道答案对不对,算错的话还请谅解,不过方法应该是这个...
z的共轭=a-bi
代入(2+4i)/t=3ati得
a-bi=(2/t)+((4/t)-3at))i
所以a=2/t b=-((4/t)-3at))=6-(4/t)
所以y=-2x+6(这里a,b用x,y代了,看起来顺眼一点...)
Abs(z-i)+Abs(z+i)就是复平面内到点(0,1)和(0,-1)的距离之和
于是求(0,-1)关于直线y=-2x+6的对称点得(28/5.9/5)(转移代入...)
所以距离的最小值就是这一点到(0,1)的距离即4根号2
推荐
- 已知复数z=a+bi(a,b∈R),存在实数t,使z的共轭=(2+4i)/t-3ati成立
- 已知方程x2+(4+i)x+4+ai=0(a∈R)有实根b,且z=a+bi,则复数z=_.
- x^2-(6+i)+9+ai=0(a∈R)有实数根b,复数z满足|z-a-bi|=2|z|,求z在何时,|z|有最小值并求出最小
- 已知z^2/(1+z)和z/(1+z^2)都为实数,则复数z=a+bi为
- 已知复数Z=a+bi(a、b属于R)若存在实数t使a-bi=(2+4i)/t -3ati成立.(1)求证2a+b为定值(2)若|Z-2|<
- 公式法的一道数学题 急急急~~~
- 用含有Ag+Al3+Mg2+Na2+等四种阳离子溶液做以下实验,然后填写下列表格
- 在数列{an}中,a1=1,2a(n+1)=(1+1/n)^2*an,(1)证明数列{an/n^2}是等比数列,并求{an}的通项公式
猜你喜欢