已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5.(1证明tanA=2tanB (2)tanB的值 重点是!
重点是第二问!
人气:190 ℃ 时间:2019-08-20 15:06:05
解答
证明:
⑴
sin(A+B)=sinAcosB+sinBcosA=3/5
sin(A-B)=sinAcosB-sinBcosA=1/5
两式相加,得:
2sinAcosB=4/5
sinAcosB=2/5 ①
则sinBcosA=1/5 ②
①/②,得:
tanA/tanB=2
即tanA=2tanB
⑵
∵△ABC是锐角三角形
∴0<C<π/2
又A+B=π-C
∴π/2<A+B<π
∵sin(A+B)=3/5
∴cos(A+B)=-√[1-sin²(A+B)]=-4/5
则tan(A+B)=sin(A+B)/cos(A+B)=-3/4
即(tanA+tanB)/(1-tanAtanB)=-3/4
又tanA=2tanB
∴3tanB/(1-2tan²B)=-3/4
即2tan²B-4tanB-1=0
解得tanB=(4±2√6)/4
∵0<B<π/2
∴tanB=(4+2√6)/4=1+(√6)/2
推荐
猜你喜欢
- 若温度计水银球放在支管口以下位置,会导致收集的产品中 混有低沸点杂质;若温度计水银球放在支管口以上位置,会导致收集的产品中混有高沸点杂质;分别解释两种情况,为什么会产生高低沸点的杂质
- 你说的那个|3-2a|+|b+1/3|=0 求A、B 的值是多少啊 是咋算的哇
- 在三角形ABC中,角B=2倍的角A,AD平分角BAC,求证AC=AB+BD,图,
- 请根据g=mg,p=f/s等公式推导静止在水平桌面上的均匀圆柱体对桌面的压强为p=pgh
- 某元素原子中4S能级有两个电子,为什么这种元素是Ca?
- 机械运动是不是只有 平动 和 转动?能不能同时进行?或有没有其他的?
- 在三角形ABC中,角C=90°,AD是BC边上的中线,DE垂直AB于E,求证AC^2=AE ^2-BE ^2
- 英语翻译