设m>0,在平面直角坐标系中,已知向量a(mx,y+1),向量b(x,y-1).a⊥b,动点M(x,y)的轨迹为E.
1求轨迹E的方程并说明该方程所表示曲线的形状2已知M=1/4求该曲线的离心率
人气:197 ℃ 时间:2020-01-29 23:00:24
解答
向量a⊥b
∴mx^2+(y+1)(y-1)=0
mx^2+y^2=1
E的方程:x^2/(1/m)+y^2=1
∵m>0
∴E是椭圆
(2)
m=1/4
椭圆E的方程:x^2/4+y^2=1
a^2=4
a=2
c^2=4-1=3
c=√3
∴离心率e=c/a=√3/2
推荐
- 设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y−1),a⊥b,动点M(x,y)的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状.
- 设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的
- 设m∈R,在平面直角坐标系中,已知向量a(mx,y+1)b(x,y-1).a⊥b,m等于
- 在平面直角坐标系中,已知向量a=((1/4)x,y+1),向量b=(x,y-1),a垂直b,动点M(x,y)的轨迹为E.是否存在圆...
- 在平面直角坐标系中,已知向量a(1/4x,y+1),向量b(x,y-1) a垂直b,动点M(x,y)的轨迹为E
- he has just had a chocolate bar.这句怎么两个have?这是什么结构?
- 1.判断关于x的方程,x的平方-mx〔2x-m+1〕=x是不是一元二次方程,如果是,指出各项系数2.试证明关于x的方程〔R的平方-8R+18〕x的平方+2Rx+1=0,不论R取何值,该方程都是一元二次方程
- 杭州市出租车收费标准如下:3公里以内(含3公里)收费10元,超过3公里的部分每公里收费2元.超过起步里程10公里以上的部分加收50%,即每公里3元.(不足1公里以1公里计算) (1)小明一
猜你喜欢