>
数学
>
已知四棱锥P-ABCD的底面是边长为2的菱形,且∠ABC=60°,PA=PC=2,PB=PD.
(Ⅰ)若O是AC与BD的交点,求证:PO⊥平面ABCD;
(Ⅱ)若点M是PD的中点,求异面直线AD与CM所成角的余弦值.
人气:487 ℃ 时间:2019-08-20 05:52:19
解答
证明:(Ⅰ)连接AC与BD交于点O,连OP.
∵PA=PC,PD=PB,且O是AC和BD的中点,
∴PO⊥AC,PO⊥BD
∴PO⊥平面ABCD.
(Ⅱ)取PA的中点N,连接MN,则MN∥AD,
则∠NMC就是所求的角,
根据题意得
MN=1,NC=
3
,PD=
6
所以,
MC=
P
C
2
−P
M
2
=
4−
6
4
=
10
2
故
cos∠NMC=
M
N
2
+M
C
2
−N
C
2
2MN•MC
=
10
20
推荐
在四棱锥P-ABCD中,PA=PB.底面ABCD是菱形,且∠ABC=60°.E在棱PD上,满足PE=2DE,M是AB的中点. (1)求证:平面PAB⊥平面PMC; (2)求证:直线PB∥平面EMC.
已知四棱锥P-ABCD的底面是边长为2的菱形,且∠ABC=60°,PA=PC=2,PB=PD. (Ⅰ)若O是AC与BD的交点,求证:PO⊥平面ABCD; (Ⅱ)若点M是PD的中点,求异面直线AD与CM所成角的余弦值.
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=根号2a,点E是PD的中点
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1,证PA⊥ABCD
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1
若方程组/5m+n=1-a 的就满足m+n>0,则a的取值范围为:\m+5n=2 A:a>3 B:a<3 C:a≥3 D:a≤3
已知线段AB=18cm在线段AB的延长线上截取BC=8cm若点D是AC的中点,求BD的长度
“两条相交直线的投影可能平行”这个说法对吗?
猜你喜欢
设P为双曲线x24-y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是_.
steal,rob,cheat的详细用法,
把氢氧化钠固体放在纸上称量 这句话对吗?
填带“过”的两字词语
函数y=tanx-tan3x1+2tan2x+tan4x的最大值与最小值的积是 _ .
方程组a1x+b1y=c1,a2x+b2y=c2的解为X=3,Y=4,简便方法 ,解方程组3a1x+2b1y=5c1,3a2x+2b2y=5c2的解
布袋中有足够多的5种不同颜色的球,最少取多少个才能保证其中一定有3个颜色一样的球?
做一个无盖的圆柱形铁皮水桶,高是70cm,底面直径是50cm,至少需要铁皮多少平方厘米
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版