设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q=?
答案是-2或1
人气:293 ℃ 时间:2019-09-29 01:28:49
解答
因为Sn+1,Sn,Sn+2成等差数列
S(n+1)+S(n+2)=2*S(n)
(q^(n+1)-1)*a1/(q-1)+(q^(n+2)-1)*a1/(q-1)=2*(q^(n)-1)*a1/(q-1)
q^(n+1)-1+q^(n+2)-1=2*q^n-2
q*q+q-2=0
所以q=-2或1
推荐
- 设{an}是公比为q的等比数列,Sn是它的前n项和.若{Sn}是等差数列,则q=_.
- 设等比数列an的公比为q,前n项和为sn,若s(n+1),sn,s(n+2)成等差数列,求q的值
- 设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则公比q为( ) A.q=-2 B.q=1 C.q=-2或q=1 D.q=2或q=-1
- 设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q等于多少?若an=1,求sn前n项和tn
- 设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则公比q为( ) A.q=-2 B.q=1 C.q=-2或q=1 D.q=2或q=-1
- pride-swallowing是什么意思啊
- 以下和地月系处于同一级别的天体系统是
- {4x+3y=17 10x-7y=-11 用代入法,是二元一次方程
猜你喜欢