| A+B |
| 2 |
| C |
| 2 |
| C |
| 2 |
| C |
| 2 |
∴
cos
| ||
sin
|
sin
| ||
cos
|
∴
| 1 | ||||
sin
|
∴sinC=
| 1 |
| 2 |
∴C=
| π |
| 6 |
| 5π |
| 6 |
由2sinBcosC=sinA得2sinBcosC=sin(B+C)
即sin(B-C)=0∴B=C=
| π |
| 6 |
| 2π |
| 3 |
由正弦定理
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| sinB |
| sinA |
| 3 |
| ||||
|
| 3 |
| A+B |
| 2 |
| C |
| 2 |
| A+B |
| 2 |
| C |
| 2 |
| C |
| 2 |
| C |
| 2 |
cos
| ||
sin
|
sin
| ||
cos
|
| 1 | ||||
sin
|
| 1 |
| 2 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
| sinB |
| sinA |
| 3 |
| ||||
|