| B+C |
| 2 |
| π−A |
| 2 |
则cosA+2cos(
| B+C |
| 2 |
=cosA+2sin(
| A |
| 2 |
=1−2sin2
| A |
| 2 |
| A |
| 2 |
=−2(sin
| A |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
易得当sin
| a |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| B+C |
| 2 |
故θ=
| π |
| 3 |
(2)由(1)的结论
S=
| 1 |
| 2 |
| ||
| 4 |
又∵a=1,即A=
| π |
| 3 |
| ||
| 4 |
故△ABC面积的最大值
| ||
| 4 |
| B+C |
| 2 |
| B+C |
| 2 |
| B+C |
| 2 |
| π−A |
| 2 |
| B+C |
| 2 |
| A |
| 2 |
| A |
| 2 |
| A |
| 2 |
| A |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| a |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
| B+C |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| ||
| 4 |
| π |
| 3 |
| ||
| 4 |
| ||
| 4 |