函数fx具有一阶连续导数,证明Fx=(1+|sinx|)f(x)在x=0处可导的充要条件是f(0)=0.
人气:422 ℃ 时间:2020-04-08 11:23:16
解答
充分性.
若f(0)=0,则F'(0)=lim(h->0)[(1+|sinh|)f(h)]/h=lim(h->0)f(h)/h=f'(0)
即充分性成立.
必要性.
若F'(0)存在,有F'(0)=lim(h->0)[(1+|sinh|)f(h)-f(0)]/h=lim(h->0)[(f(h)-f(0))/h+|sinh|f(h)/h]
=f'(0)+lim(h->0)|sinh|/h* f(h)
若f(0)≠0,则
在x=0的左邻域,lim|sinh|/h=-1,因此有F'(0-)=f'(0)-f(0)
在x=0的右邻域,lim|sinh|/h=1,因此有F'(0+)=f'(0)+f(0)
这样F'(0-)≠F'(0+),因此F'(0)不存在,矛盾.
因此必要性成立.
推荐
- 设函数f(x)在x=0处可导且 limx→0{[f(x)+1]/[x+sinx]}=2 则f(x)导数在x=0的值是?
- 设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(提示:利用中值定理证明).
- 分段函数f(x)=sinx (x=0时),讨论f(x)在x=0处的左右导数是否存在,分别是多少.
- 设f(x)可导且f(x)=0,证明:F(X)=f(x)(1+/sinx/)在x=0点可导,并求F(0)的导数
- 关于导数的问题:1.设函数f(x)=|sinx|,则x=0处的左右导数
- 美 无处不在800字作文,最好是自己写的.
- 集合{1,2,…,2011}的元素和为奇数的非空子集的个数为()求详细过程步骤谢谢 .
- 某同学用毫米刻度尺测量一支铅笔的长度,得出如下数据,这些数据中比较合理,更接近真实值的是( )
猜你喜欢