已知x、y、z都是实数,且满足条件已知xyz为实数,且满足x+2y-z=6,x-y+2z=3,则x^2+y^2+z^2的最小值为
要求初一学生能看懂!要具体过程!急
人气:379 ℃ 时间:2019-08-18 19:14:38
解答
x+2y-z=6 所以2x+4y-2z=12
因为x-y+2z=3
两边相加 3x+3y=15 x+y=5
带回去 得到y=5-xz=4-x
带回x^2+y^2+z^2=3x^2 - 18x +41
= 3(x^2- 6x +9)+14
= 3( x - 3)^2 +14
当 x=3 最小 为 14
所以x^2+y^2+z^2的最小值为 14
推荐
猜你喜欢
- Let's _______ a soccer ball,Jack.
- 超级聪明题喔,有挑战~
- 黑眼珠是眼睛的什么结构?
- 已知整值随机变量X的概率分布为:P(X=k)=1/2^k,k=1,2,
- 解下列方程 (x-6)(x+6)=64 x的平方+x-1=0 16(y-2)的平方=9(y+3)的平方
- i like all the other subject ? english
- 体育节征文
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明存在一点ξ∈(0,1),使得2f(ξ)+ξf'(ξ)=0