已知函数f(x)=1/3x^3+2x,对任意的实数t∈[-3,3],f(t-2)+f(x)<0恒成立则x的取值范围是?
人气:274 ℃ 时间:2019-09-02 09:42:10
解答
f(x)=1/3x^3+2x,
∵f'(x)=x²+3>0
∴f(x)是增函数
∵f(-x)=-1/x³-2x=-f(x)
∴f(x)是奇函数
对任意的实数t∈[-3,3],f(t-2)+f(x)<0恒成立
∴f(t-2)第2行 求导是∵f'(x)=x²+2>0 吧??是打错了么 下面还没看 后面影响么?是2打成了3,后面没影响
推荐
- 已知函数f(x)=x2+2x,若存在实数t,当x∈[1,m]时,f(x+t)≤3x恒成立,则实数m的最大值为_.
- 已知函数f(x)=x^2+2x,若存在实数t,当x∈【1,m】,m>1时,f(x+t)≤3x恒成立,求实数m的取值范围.
- 已知函数f(x)=x2+2x,若存在实数t,当x∈[1,m]时,f(x+t)≤3x恒成立,则实数m的最大值为_.
- 已知函数f(x)=x^2+2x,若存在实数t,当x属于[1,m]时,f(x+t)≤3x恒成立,则实数m的最大值为](求高手教方法
- 已知函数f(x)=3x2-2x+1,g(x)=ax2,对任意的正实数x,f(x)≥g(x)恒成立,则实数a的取值范围是_.
- came for 与came to的不同
- 量筒里装有250ml的水,把质量是100g的石块用细线拴好浸没在水中,水面上升到290ml处,
- 当x趋近于时,求从0到x的定积分∫(1/x^3)*[e^(-t^2)-1]dt
猜你喜欢
- 改为被动语态:1、we should look after elder people very well
- 同时抛掷2枚均匀的硬币100次,设两枚硬币都出现正面的次数为η,求Eη.
- 72÷4.5=( )用简便的方法计算.
- 当铁钉沾水后,为了防止它生锈
- 填关联词(每个括号里,只能填一个字)现在想来,( )感觉到母亲的情感的丰富,( )觉得她讲的故事能那样的感动着妹仔,( ) ()母亲生在现在,有机会把自己造成一个教员,( )可成为一个循循善诱的良师.
- “等角的余角相等”的题设、结论是什么
- 读英语有什么秘籍,写英语又有什么秘籍
- 最近大家都在关注什么话题?