|a|=1,得:a²=1
c⊥a,可得ac=0
即:a(a+b)=0 得:
a²+ab=0 即:ab=1
cos=ab/|a||b|
=1/(1x2)
=1/2
所以可得a向量与b向量夹角为60°为什么a(a+b)=0 前面那个a是怎么来的?ac=0c=a+b a是a可得:a(a+b)=0不好意思,上面的错了,应是:|a|=1,得:a²=1c⊥a,可得ac=0即:a(a+b)=0 得:a²+ab=0 即:ab=-1cos=ab/|a||b|=-1/(1x2)=-1/2所以可得a向量与b向量夹角为120°