点O为△ABC的内切圆圆心,a b c 为∠A ∠B∠C 所对边的长度,求证aOA+bOB+cOC=0(OA OB OC和0是向量)
人气:207 ℃ 时间:2019-10-11 01:00:57
解答
证明:
a=OB-OC
b=OC-OA
c=OA-OB
则a*OA+b*OB+c*OC=(OB-OC)*OA+(OC-OA)*OB+(OA-OB)*OC
展开即可得证!
说明 以上均为向量,*为点乘不是X乘
推荐
- 已知O为三角形ABC的内心,a,b,c分别是A.B.C边所对边长.求证:aOA+bOB+cOC=0(OA,OB,OC均指向量)
- 为什么若aOA+bOB+cOC=0(OA,OB,OC,0均为向量),则O为三角形ABC的内心?
- 已知向量OA,OB,OC满足OA·OB=OB·OC=OC·OA,且,aOA+bOB+cOC=0a,b,c为角ABC对应的三边,则,△ABC的形状
- 已知O是三角形abc中一点,AB=c,BC=a,AC=b,若aOA+bOB+cOC=零向量,(OA,OB,OC都向量)求证O是内心.
- 已知向量OA,OB,OC和三边a,b,c,I是三角形的内心,证明向量OI=(aOA+bOB+cOC)/(a+b+c)
- d(y)/d(x)=cos(x+y) 的通解怎么求啊
- 1:三棱锥S-ABC侧棱为L,底面边长为a,写出求此三棱锥S-ABC体积的一个算法
- 西瓜、苹果、香蕉和牛奶可不可以一起吃
猜你喜欢