求证lg(a+b)/2+lg(b+c)/2+lg(c+a)/2>lga+lgb+lgc
人气:392 ℃ 时间:2020-01-28 00:06:01
解答
.哎 给我3分钟采纳个abc为不全相等正数坑
推荐
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- 若a,b,c,是不全相等的正数,求证:lg(a+b)/2+lg(b+c)/2+lg(c+a)/2>lga+lgb+lgc
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- 若a.b.c是不全相等的正数,求证:lga+b/2+lgb+c/2+lga+c/2>lg a+lg b+lg c.
- a,b,c是不全相等的正数,求证:lg(a+b)/2 -lg(b+c)/2 +lg(c+a)/2 >lga +lgb +lgc
- 探究馒头在口腔的变化试验,操作不正确的是
- 个位是( )的数,都能被2整除;个位上是( )或( )的数,都能被5整除;个位上是( )的数,同时能被2
- f(x)=|2x-1|,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),则函数y=f4(x)的零点个数为 _ .
猜你喜欢