在一次聚会上,每个人都和其他所有人握了一次 手,仅有一个人只和他认识的人握了手.握手的总次数60次,
人气:302 ℃ 时间:2020-06-09 06:02:27
解答
把题目发完整,这题是不是最后要求有多少人?
这题可以用假设法,
因为一个人只和他认识的人握了手的这个人比较特殊,
假设这个人他所认识的人的数量有个限制
假如这个人不认识一个人,那么设除他之外有n个人
每个人和所有人握手一次,那么这个人共握手n-1次
总共有n个人,那么握手的次数就是n*(n-1)
因为二个人彼此握手只能算一次,所以重复计算了一半
因此总的握手次数就是n*(n-1)/260
可得n≥11,且n为整
综上可知n=11,加上特殊的人,所以总共的人数为11+1=12人
所以总共的人数为12人
推荐
猜你喜欢
- jan has lunch at twelve 对 at twelve 提问
- 一瓶2升的果汁喝了10分之3,还剩多少毫升
- 把长8cm,宽3cm,高3cm的长方体锯成一个最大的正方体,锯掉部分的体积是多少?
- 象公路 水路 铁路还有什么路?
- 温室效应,臭氧空洞,酸雨分别是什么引起的?
- 一个最简分数,它的分子分母的积是100,这个最简分数是( )
- 求曲线y=1/2x^2,x^2+y^2=8所围成的图形面积
- 已知向量a,b满足| a |=1 b=(2,1)且λ a+b=0 则 |λ |=