答:
第五个箭头那一步出错了.√u/(1+u) du=√u/[2√u/(1+u)] d(√u),这里不对.应该是:
√u/(1+u)du=2u/(1+u)d(√u).
按您这样换元,原积分是不是-e^2xarctane^x?
令e^x=u,则e^2x=u^2,x=lnu,dx=1/u
∫-e^2xarctane^x dx
=∫ -u^2arctanu/u du
=-∫ uarctanu du
=-1/2[u^2arctanu-∫u^2 d(arctanu)]
=-1/2[u^2arctanu-∫u^2/(1+u^2) du]
=-1/2[u^2arctanu-∫1-1/(1+u^2) du]
=-1/2[u^2arctanu-u+arctanu+C]
=1/2(u-(1+u^2)arctanu) + C
=1/2(e^x-(1+e^2x)arctane^x) + C
求导以后检验正确.