两边对x求导得:f'(x)+2f(x)=2x
即y'+2y=2x
特征方程为r+2=0,得r=-2
y*=ax+b,代入得:a+2ax+2b=2x,对比系数得:2a=2,a+2b=0,解得:a=1,b=-1/2
所以y=Ce^(-2x)+x-1/2
代入原等式:Ce^(-2x)+x-1/2+2[-1/2Ce^(-2x)+x^2/2-1/2x](0,x)=x^2
即 Ce^(-2x)+x-1/2+2[-1/2Ce^(-2x)+x^2/2-1/2x+1/2C]=x^2
化简即得:-1/2+C=0,得C=1/2
所以f(x)=1/2e^(-2x)+x-1/2