证明;∵AD⊥AB,BE⊥AB ∴∠DAC=∠CBE=90°∵AD=BC,AC=BE∴△DAC≌△CBE﹙SAS﹚∴∠ADC=∠BCE ,又∵∠ADC+∠ACD=90°∴∠BCE+∠ACD=90°∴∠DCE=180°-90°=90°,即DC⊥EC