∵AC=BC,
∴∠CAB=∠CBA,
∵∠CBA=∠CDE,(同弧上的圆周角相等),
∴∠ACB=∠ECD,
∴∠ACB-∠ACD=∠ECD-∠ACD,
∴∠ACE=∠BCD.
在△ACE和△BCD中,
|
∴△ACE≌△BCD,
∴AE=BD.
(2)的结论应该为AD+BD=
2 |
证明:作CF⊥CD,交DA的延长线于F,
∵AC⊥BC,AC=BC,
∴O在AB上,∠CAB=∠CBA=45°,
∴∠CDA=∠CBA=45°,
∴∠F=180°-∠FCD-∠CDA=45°=∠CDA,
∴CF=CD,
∵∠FCD=∠ACB=90°,
∴∠FCA=∠BCD,
在△ACF和△BCD中
|
∴△ACF≌△BCD,
∴BD=AF,
∴AD+BD=AD+AF=DF,
在△DCF中,由勾股定理得:DF=
CD2+CF2 |
2 |
∴AD+BD=
2 |