已知点P在椭圆上x^2/9+y^2/5=1上运动,点Q满足向量PQ=1/2向量OP 则动点Q的轨迹方程是
人气:165 ℃ 时间:2020-06-21 08:28:20
解答
设Q(x,y)P(x0,y0) 因为向量PQ=1/2向量OP 所以x0/x=y0/y=2/3 则x0=2/3x,y0=2/3y 所以P(2/3x,2/3y)代入椭圆方程 得Q点的轨迹为4x^2/81+4y^2/45=1
推荐
- 已知点P在椭圆X^2/a^4+Y^2/b^2=1(a>b>0)上运动,连接OP(O是坐标原点)并延长OP至Q使PQ=OP求动点Q的轨迹方程(详细过程及答案)
- 椭圆x^2/a^2+y^2/b^2=1(a>b>0)与直线x+y-1=0相交于PQ两点,且向量OP⊥向量OQ,O为坐标原点
- 过椭圆x²/4+y²=1上的一点M做x轴的垂线,垂足为点p,若满足向量PQ=λ向量PM的动点Q的轨迹是圆
- 已知点P是椭圆x^2/25+y^2/16=1上任意一点M是OP上的点且满足|OM|=2|MP|向量 求动点M的轨迹方程
- 已知椭圆x^2/2+y^2=1,椭圆上有两点P.Q,O为原点,且有直线OP.OQ的斜率满足Kop*Koq=-1/2求线段PQ中点M轨迹
- 试说明:三个连续整数的乘积能被6整除
- 井然有序,安静闲适,巧妙绝伦,别具匠心用其中的两个词语造句
- 一道数学扩展题
猜你喜欢