如何证明:阶的素数的群一定是循环群啊?
人气:412 ℃ 时间:2020-03-25 11:19:24
解答
设p为素数,|G|=p,由于G的所有元素的阶都可以被p整除,故任取a∈G,a的阶要么是1要么是p,若a≠1,则a的阶=p,如此a^p=1且a、a^2、a^3…a^(p-1)∈G,又因为|G|=p,故G={1,a,a^2…a^(p-1)},这就证明了G是循环群.
推荐
猜你喜欢
- 罗曼 罗兰20世纪初,为名人作传,三部英雄传分别是哪几部?
- 英语翻译
- 一个正方形和一个三角形的面积相等,已知正方形的边长是6分米,三角形的底是9分米,求三角形的高.
- 南极大陆周围的冰山对人类来说有哪些利弊?
- 为确保国庆间用电安全,电力工人开车沿着一条东西方向的公路来回行驶.某一天早晨从A地出发,晚上到达B地规定向东为正,向西为负.当天记录如下(单位:千米)-17 -8 +6 -14 -7 +11 -5 -9 (1)问B地在A地何处,相距多少千米
- 怎样通过实验证明海带中确实存在碘元素?
- -1/3的绝对值的相反数与3又2/3的相反数的和为
- 一个房间长六米,宽四米,如果在房间四壁贴壁纸,除去门窗7平方米,每平方米壁纸12.5元