求定积分∫(x+2)dx/根号2x+1.上限4,下限0.
需过程.谢谢!
人气:271 ℃ 时间:2020-01-30 14:20:16
解答
∫[(x+2)/根号2x+1]dx
= ∫{[1/2(2x+1)+2/3]/根号2x+1}dx
=∫1/2(根号2x+1)dx+∫[3/2 /根号2x+1 ]dx
=1/6 *(2x+1)^(3/2)+3/2*(根号2x+1)
上限4,下限0.
得到 =22/3
推荐
- 定积分∫dx/(x^2根号(1+x^2))上限根号3,下限1
- 上限1 下限0 根号下(-x2+2x)dx定积分
- 求定积分∫上限2,下限1 dx / (根号下4-x^2),
- 求定积分∫上限2,下限1 (根号x-1 ) /x dx,
- 求定积分:∫dx/x(根号x^2-1),上限 - (根号2),下限-2
- 高一物理关于电场线、电场力、电势能、电场强度和电势的问题
- 已知集合A={(x,y)/2x-y+2≥0 x-2y+1≤0 x+y-2≤0,B={(x,y)/x^2+(y-1)^2≤m},若A包含于B,求m的取值范围
- 76克木糖醇分子的物质的量是0.5mol,其中含碳原子多少mol?
猜你喜欢