求定积分∫(x+2)dx/根号2x+1.上限4,下限0.
需过程.谢谢!
人气:322 ℃ 时间:2020-01-30 14:20:16
解答
∫[(x+2)/根号2x+1]dx
= ∫{[1/2(2x+1)+2/3]/根号2x+1}dx
=∫1/2(根号2x+1)dx+∫[3/2 /根号2x+1 ]dx
=1/6 *(2x+1)^(3/2)+3/2*(根号2x+1)
上限4,下限0.
得到 =22/3
推荐
- 定积分∫dx/(x^2根号(1+x^2))上限根号3,下限1
- 上限1 下限0 根号下(-x2+2x)dx定积分
- 求定积分∫上限2,下限1 dx / (根号下4-x^2),
- 求定积分∫上限2,下限1 (根号x-1 ) /x dx,
- 求定积分:∫dx/x(根号x^2-1),上限 - (根号2),下限-2
- 改错:What's you doing?
- 黄()()(),成语
- 求两句连词成句(急需):dog,can,that,it,the,door,open,the,his,master,says,for
猜你喜欢