> 数学 >
如何利用三角形的三边长度求三个角的度数
人气:326 ℃ 时间:2020-04-06 16:26:33
解答
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题.
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——
a^2 = b^2+ c^2 - 2·b·c·cosA
b^2 = a^2 + c^2 - 2·a·c·cosB
c^2 = a^2 + b^2 - 2·a·b·cosC
cosC = (a^2 + b^2 - c^2) / (2·a·b)
cosB = (a^2 + c^2 -b^2) / (2·a·c)
cosA = (c^2 + b^2 - a^2) / (2·b·c)
以上内容为复制过来的.简单的说 已知三个边求角的问题就是利用余弦定理套公式。余弦定理的证明就要你自己去查资料了。
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版