1 |
x+2 |
(x−2)2 |
x(x−1) |
(x+1)(x−1)−3 |
x−1 |
=
1 |
x+2 |
(x−2)2 |
x(x−1) |
x−1 |
(x+2)(x−2) |
=
1 |
x+2 |
x−2 |
x(x+2) |
=
2 |
x2+2x |
由x2+2x-4=0,得x2+2x=4,
原式=
2 |
4 |
1 |
2 |
1 |
x+2 |
x2−4x+4 |
x2−x |
3 |
x−1 |
1 |
x+2 |
(x−2)2 |
x(x−1) |
(x+1)(x−1)−3 |
x−1 |
1 |
x+2 |
(x−2)2 |
x(x−1) |
x−1 |
(x+2)(x−2) |
1 |
x+2 |
x−2 |
x(x+2) |
2 |
x2+2x |
2 |
4 |
1 |
2 |