![](http://hiphotos.baidu.com/zhidao/pic/item/962bd40735fae6cd6fbc52d00cb30f2442a70f72.jpg)
解得x1=-3,x2=1,
∵点A在点B的左侧,
∴A(-3,0),B(1,0),
∵点C是点A关于点B的对称点,
∴C(5,0),
∵F是线段BC的中点,
∴F(3,0);
(2)∵一次函数y=-x+m的图象过点C(5,0)
∴-5+m=0,
解得,m=5,
∴CD的解析式是y=-x+5,
设K点的坐标是(t,0),则H点的坐标是(t,-t+5),G点的坐标是(t,t2+2t-3),
∵K是线段AB上一动点,∴-3≤t≤1,
HG=(-t+5)-(t2+2t-3),
=-t2-3t+8,
=-(t+
3 |
2 |
41 |
4 |
∵-3≤-
3 |
2 |
∴当t=-
3 |
2 |
41 |
4 |
(3)∵A(-3,0),C(5,0),
∴AC=5-(-3)=5+3=8,
∵直线l过点F且与y轴平行,
![](http://hiphotos.baidu.com/zhidao/pic/item/cc11728b4710b91231dc0f4fc0fdfc0392452266.jpg)
∴直线l的解析式是x=3,
∵点M在l上,点N在抛物线上,
∴设点M的坐标是(3,m),点N的坐标是(n,n2+2n-3).
①若线段AC是以A、C、M、N为顶点的平行四边形的边,则须MN∥AC,MN=AC=8,
(i)当点N在点M的左侧时,MN=3-n,
3-n=8,解得n=-5,
n2+2n-3=(-5)2+2×(-5)-3=25-10-3=12,
所以,N点的坐标是(-5,12);
(ii)当点N在点M的右侧时,NM=n-3,
n-3=8,解得n=11,
n2+2n-3=112+2×11-3=121+22-3=140,
所以,N点坐标是(11,140);
②若线段AC是以A、C、M、N为顶点的平行四边形的对角线,由题意可知,点M与点N关于点B中心对称,
∵点M的横坐标为3,点B(1,0),
∴点N的横坐标为-1,
n2+2n-3=(-1)2+2×(-1)-3=1-2-3=-4,
所以,N点坐标是(-1,-4),
综上所述,符合条件的N点坐标有(-5,12),(11,140),(-1,-4).