∴3a>2c=-4a-2b,3a>b,2c>b⇒2(-2a-b)>b;
∴a>-
2 |
7 |
1 |
3 |
3 |
4 |
1.a>0,则-
7 |
2 |
b |
a |
b |
a |
b |
a |
4 |
3 |
=>-
7 |
2 |
b |
a |
4 |
3 |
2.若a<0,则-
7 |
2 |
b |
a |
b |
a |
b |
a |
4 |
3 |
=>矛盾,所以a<0,假设不成立.
所以-
7 |
2 |
b |
a |
4 |
3 |
故答案为:(-
7 |
2 |
4 |
3 |
b |
a |
2 |
7 |
1 |
3 |
3 |
4 |
7 |
2 |
b |
a |
b |
a |
b |
a |
4 |
3 |
7 |
2 |
b |
a |
4 |
3 |
7 |
2 |
b |
a |
b |
a |
b |
a |
4 |
3 |
7 |
2 |
b |
a |
4 |
3 |
7 |
2 |
4 |
3 |