> 数学 >
lim(1+ln(1+x))^(2/x) x趋向于0
人气:114 ℃ 时间:2020-04-22 06:29:37
解答
x→0
lim (1+ln(1+x))^(2/x)
=lim e^ln (1+ln(1+x))^(2/x)
根据复合函数的极限运算:lim(x→x0) f(g(x))=f(lim(x→x0) g(x))
=e^ lim ln (1+ln(1+x))^(2/x)
现在考虑
lim ln (1+ln(1+x))^(2/x)
=2*lim ln (1+ln(1+x)) / x
利用等价无穷小:ln(1+x)~x
=2*lim ln(1+x) / x
利用等价无穷小:ln(1+x)~x
=2*lim x/x
=2
故,原极限=e^2
有不懂欢迎追问
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版