> 数学 >
求极限(n^2-4n+6)^8/10n^15-8n^10-2n^3+5 n趋于无穷
人气:218 ℃ 时间:2020-10-02 04:03:38
解答
上下除以n^16
则原式=[(n²-4n+6)/n²]^8/[(10n^15-8n^10-2n^3+5)/n^16]
=(1-4/n+6/n²)^8/(10/n-8/n^6-2/n^13+5n^16)
n趋于无穷
则n在分母的都趋于0
所以分母趋于0-0-0+0=0
分子趋于(1-0+0)^8=1
所以分式趋于无穷
所以极限不存在
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版