> 数学 >
分块对角矩阵行列式等于分块行列式相乘,怎么证明?
人气:118 ℃ 时间:2019-12-18 03:57:28
解答
将每个子方阵通过行(列)变换,化为上(下)三角矩阵,则大矩阵化为上(下)三角矩阵,则大矩阵的行列式等于主对角线上元素的乘积;且每个子矩阵的行列式等于它们的上(下)三角矩阵主对角线上元素的乘积.即分块对角矩阵行列式等于分块行列式相乘
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版