常微分方程 dy/dx=y/x+x(x+y/x)^2
人气:439 ℃ 时间:2019-12-13 10:33:24
解答
设y/x=t,代入得
x*(dt/dx)=x*(x+t)^2,
由于x不等于0,所以两边消除同类项,并设x+t=z,代入得
dz/dx=z^2 +1 ,
从而有 dz/(z^2 +1) = dx ,
两边积分得 tan(z) -x =c,化为y,
得 tan(x + y/x) -x =c (c为常数)dz/(z^2 +1) = dx ,两边积分不是arctanz=x+c么对不住,写错了
推荐
猜你喜欢
- 黄道和赤道的区别
- 家用电熨斗工作时的电阻为48.4欧,求它的电功率.
- ____the baby___ crying yet?(stop) 翻译,并说明原因
- 一辆质量为2000kg的汽车在平直的公路上匀速向西运动,如果他受到的牵引力是10000N
- 成语接龙:万众一心—( )—( )—( )—( )—事半功倍
- 7只小动物被困在圆圈里,请你画3条直线,把它们单独隔(ge)开.
- 月光下的夹竹桃的影子的特点
- 直线l过点A(-3,4),且点P(3,-2),Q(-1,6)到该直线的距离相等,求直线l方程及点A到P,Q所在直线的距离.