> 数学 >
求柯西不等式及均值不等式的推论
人气:410 ℃ 时间:2020-04-30 00:53:39
解答
柯西不等式推论:(x1+y1+…)(x2+y2+…)…(xn+yn…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n
注:“Πx”表示x1,x2,…,xn的乘积,其余同理.此推广形式又称卡尔松不等式,其表述是:在m*n矩阵中,各行元素之和的几何平均   不小于各列元素之和的几何平均之积.(应为之积的几何平均之和)
均值不等式的推论
(1)对实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a²+b²>0>-2ab
(2)对非负实数a,b,有a+b≥2√(a×b)≥0,即(a+b)/2≥√(a×b)≥0
(3)对负实数a,b,有a+b
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版